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The paper addresses the numerical solution of linear Fredholm I integral equations of 
the type arising from various one-dimensional inverse scattering problems. Typically when 
these equations are discretized they lead to very ill-conditioned algebraic systems. It is 
shown that for these types of kernels a relatively simple mesh adapting scheme leads to 
very well-conditioned systems. Moreover, when the kernel is not known explicitly but 
must be generated by numerically solving a boundary-value problem, it is shown that an 
asymptotic analysis can extract the information necessary to successfully adapt this mesh. 

1. INTRODUCTION 

We are interested in Fredholm I integral equations of the type arising in various 
“inverse” problems; for example, the problem of determining velocity or density 
profiles as in Bleistein and Cohen [l] or Chen and Tsien [2]. In such problems one is 
led to boundary-value problems of the type 

y”(x) + (4W3(1 + 4X)> Y(X) = 0, 

joy’@) + hJY(O) = do 7 (1) 

4Y’(l) + blY(l) = 4 7 

where we assume the parameter o can be assigned arbitrary values as needed. The 
constants aj , bj , dj sometimes vary with w  and could be complex valued. The term 
C(X) > 0 here is viewed as a known “reference velocity” and a(x) is considered a 
perturbation on c(x). The main feature of the problem is that a, along with y, is 
unknown; hence we have an “inverse” problem. (Chen and Tsien [2] use an alternative 
form of differential equations, say, ((p + a) y’)’ + 02y = 0, but the problems are 
essentially the same.) 

The approach to this difficult problem used in [l, 21 is, very briefly, as follows. 
Suppose y solves (1) above and that ZJ solves (1) with CL(X) = 0. If L denotes the 
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original differential operator above, we define u = y - u and make use of Green’s 
formula (see [3]) as follows: 

1’ (yLu - uLy) dx = J“ yLu dx = w2 I1 yu 3 dx 
0 0 0 

z (g 
s 
f [u + u]u ; dx = [ yu’ - y’u]; = w”g(uJ). (2) 

The argument is made that if 01 is small, u is of order cx and dropping the term involving 
u gives the linear integral equation 

IO1 k(x, w) a(x) dx = IO1 (u/c)~ ct dx = g(w), (3) 

where u = u(x; UJ) comes from solving (1) with a: = 0 (denote this by Lou = 0). In 
these applications u is called the “incident field”; and g is thought of as observed data 
at the boundaries. 

We now turn our attention to the integral equation (3) and point out its distinctions. 
First, the kernel is not known explicitly and must be generated at the desired (x, w)- 
values by numerically solving Lou = 0. More importantly, it is not “compact” in the 
sense of having as the (x, w) domain a fixed finite rectangle. For example, in the 
constant reference speed case, c(x) = co , the problem can be attacked with Fourier 
transform methods as in [I]. In this instance, the w-values represent the Fourier 
transform variable which of course is unbounded. In our approach o will be unboun- 
ded in the sense that as more accuracy is needed larger w-values are required (e.g., w  
may take on values 4, $,..., n - 4, where n is the rank of the discrete system). 

The point just made is critical in what follows since our approach is to discretize the 
problem in such a way that the linear algebraic system remains well conditioned. This 
is in happy contrast to the usual compact setting in which the discrete problem is 
typically ill conditioned if not singular. We are able to consistently solve our discrete 
systems via standard Gaussian elimination, thus avoiding more elaborate methods 
like singular-value decomposition or regularization (e.g., see [4]) or the Backus- 
Gilbert method as in [2]. 

In Section 2 we study two model integral equations. The first of these involves the 
cosine transform kernel cos (TWX). Such kernels arise naturally in the constant 
reference speed, c(x) = co , problem for which Fourier methods are available. Such 
integral equations can easily be discretized in a manner to produce orthogonal 
algebraic systems (the advantages of which will be discussed shortly). Our original 
hope was that the same mesh used for c(x) = co would also be appropriate for pertur- 
bation problems, i.e., c(x) = (1 + p(x)) co , where p(x) is relatively small. However, 
we found that for p as small as 0.1 to 0.2 the discrete problem became ill conditioned. 
This lead us to attempt to “adapt’ the mesh for x, the variable of integration, in an 
attempt to compensate for the variation in c(x). (Mesh adapting, or “variable step- 
size,” is effectively used, for example, in modern differential equation solvers; e.g., 
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see [9].) The mesh-adapting procedure is illustrated by a second model kernel cos 
(~w$(x)). Using the new mesh in discretizing the integral equation with this kernel 
again leads to an orthogonal discrete system. Numerical examples illustrate the ne- 
cessity for, and effectiveness of, adapting for this model kernel. 

In Section 3 the integral equation (3) is attacked using the mesh-adapting procedure 
described in Section 2. However, there is one additional complication; since the 
kernel is not known explicitly, how does one adapt the mesh and thus assure the 
resulting discrete system is well suited for computation? Our procedure is to do an 
asymptotic analysis, for large w, of the differential equation in (1) in order to ap- 
proximate the oscillatory behavior of the kernel. This turns out to be surprisingly 
effective and the resulting linear systems are very well conditioned. We illustrate this 
by numerically solving a problem that could be considered a typical variable reference 
speed problem. 

Section 4 contains some comments on why the adapting procedure is effective for 
these problems and the possibility of extending these ideas to other types of integral 
equations. 

The following few facts from computational linear algebra will be very useful in the 
sequel. 

A complex square matrix U is unitary iff U-l = U* (the conjugate transpose). A 
real matrix B is orthogonal iff B-l = BT, and this is true if and only if the 
rows (columns) form an orthonormal set. We will use the term “nearly orthogonal” 
nonrigorously to mean that BTB w  1, the identity. 

Suppose for matrix A, n x n and real, the exact problem of interest is Af = g. If 
the available right side has some error, say 6, then one really solves the problem 
A(f + G) = g + S. If this problem is solved exactly the following (relative) error bound 
is available: 

where K = K(A) = // A (1 . j/ A-l 11 is called the condition number of A (relative to the 
particular norm). More generally, if A also has some error E (or E could represent the 
round-off error during computation), one has the following error bound: 

# < K(A) (I+ #)/(l - II 811 . II A-l II). 

It is easily shown that, for nonsingular A, 1 < K(A) < co (see Ortega [S]). A useful 
interpretation for K is that it measure (i.e., bounds) the amount that the error in the 
data is magnified in solving for f. Clearly, given the choice, one would prefer to have 
K as close to one as possible. 

If the Euclidean norm is used, the following results hold: 

1. K(A) = 1 iff A = kV for k scalar and V-l = V’. (This reaffirms the simple 
geometric idea that matrices are ill conditioned if some of the rows (columns) are 
nearly parallel, and well conditioned if they are all nearly orthogonal.) 
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2. K(A) = U&n 3 1 A, l/i hz 1 3 where [ A1 1 2 j Aj 1 and ] A, j < J hj J ; hj are the 
eigenvalues of A. Also u1 >, oj and o, , < uj for the singular values of A (aj are the 
square roots of the eigenvalues of ArA). It is a well-established myth that the ratio 
h,/X, is a good measure of condition, “stiffness,” etc. of A. This is true for symmetric 
matrices but not in general (see E 2.1.11 of [5] for an example where X,/h, = 1 and 
K(A) is huge). However, the ratio a,/~, is valid for such measure and is used below. 

2. SOME MOTIVATION: Two MODEL PROBLEMS 

We now discuss two model problems for which we can make the discrete version 
“perfectly conditioned” in the sense of paragraph 1 above. The first example is a 
cosine transform kernel. Fourier kernels arose in our early investigations of constant 
reference speed problems, and they provide some valuable insight regarding dis- 
cretization of the variables. Consider 

s l cos(7rwx)f(x) dx = g(w), (4) 
0 

where we can choose the w  values at our discretion. 
We want to discretize both w  and x in such a way as to make the resulting matrix 

orthogonal, if possible. Fourier series (or trigonometric interpolation) theory suggests 
that we choose w  = 0, 1,2 ,..., n - 1 and xj = (j - 1)/n for 1 <cj < n; for example, 
see [6] or [7]. Although this is in some ways a very natural mesh, we modify it a bit to 

wk = k - 0.5, xj = (j- 0.5)/n for 1 <j,k <n. (5) 

If discretization (5) is applied to (4) in the simplest way we get 

+ $ cos(~~~x~)f(xJ m g(wJ, k = I ,..., II. 

It is not difficult to show that the matrix 

A = ((2/n)li2 cos mox-xj) 

is orthogonal. There are two reasons we prefer the mesh in (5) as opposed to the more 
natural one suggested above. One can view (6) as a trigonometric interpolation, but 
also as approximating the integral in (4) by the “midpoint rule” quadrature. Viewed 
the latter way, the midpoint rule is more accurate than the “rectangle rule” which 
results from the originally suggested mesh. Second, the suggested mesh is more 
“robust,” For example, if the kernel in question were sin (TWX) the same mesh would 
generate an orthogonal discrete system. Other meshes do not have this flexibility, 
which is especially important in the applications in Section 3 where the kernels are 
only approximated by the model kernels of this section. 
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In summary, we view (4) as our first model problem and (5)-(6) as its discretization. 
Since ((2/n)1/2 cos rro& = A is an orthogonal matrix, (6) can be solved by 

f = (2n)‘l” ATg. 

Alternatively, if Gaussian elimination is used the system is extremely well condi- 
tioned. 

We now consider our second model problem. 

s 
’ cos(mo$(x))j(x) dx = g(w). 

0 
(7) 

In the applications of the next section $(x) will relate to the variable reference speed 
cases, whereas $(x) = x relates to constant reference speed. However, for now we 
simply assume that 4(x) is nondecreasing on [0, I] and that it has been normalized so 
that 4(O) = 0 and c#( 1) = 1. (We note in passing that if 4’(x) > 0 and the inverse 4-i 
is available, one could solve (7) by cosine transform methods. That is, by using the 
substitution u = +(x) to get 

jol cos(~w) [f(d-'(4) $4-W] du = g(w); 

and solving for the function in brackets, etc. However, this approach does not gene- 
ralize adequately for our purpose.) 

The purpose in studying (7) is to learn how to “adapt” the x-mesh so that we retain 
our orthogonality (or nearly so) when the problem is discretized. The same adapting 
procedure is then used in the harder problems of Section 3. The idea is quite simple 
if we ask the question: How do we select the xj values so that the discretization of (7) 
is analogous to (5)-(6)? The answer then is rather clear; simply pick xj so that 

#Xj) = (j - 0.5)/n (8) 

or symbolically, xj = @‘((j - 0.5)/n). If we do this and again use wk = k -0.5 for 
1 < k < n our discrete problem is 

i hj cos (TW, +) fj = g&J, k = l,..., n. 

The only difference between (9) and (6) is the fact that the steps hi are no longer 
uniform due to the nonuniform selection of the x-mesh. Postponing for the moment 
the matter of how best to choose the hi , note that the matrix resulting from (9) is (h, 
cos (mm,&- 0.5)/n)) compared to the matrix in (6), (h cos (~w~(j- 0,5)/n)). In 
particular, the hj will, unless constant, destroy the orthogonality of the matrix. A 
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solution to this is to absorb the hi into the f;: temporarilly, i.e., define p = hiA and 
solve the orthogonal system 

Once the A. are found one solves f; = ij/hj . This process is equivalent to “column 
scaling” of the matrix in an attempt to make it better for computation. Fortunately, 
we know the scale factors h, in advance and we know that the resulting matrix is 
“perfectly” conditioned. 

Figure I below provides some graphical motivation for the adapted grid given by 
(8). Note that for arbitrary 4(x) and any integer n > 0, the function cos(nn~$(x)) = 0 
precisely at the mesh points xj (just as in the simple case 4(x) = x). The construction 
of the mesh and this phenomenon are illustrated for IZ = 6 and C(x) = x2 in Fig. 1. 

Let us now return to the question of determining the proper values for hj in (9). If 
4’(x) is available and strictly positive a good choice is 

h, = l/(Kz#(Xj)). (10) 

This choice seems reasonable by a simple graphical argument, but can be put on a 
mathematical foundation as follows. If one made the independent variable change 

1 

5/6 

4/6 

3/6 

2/6 

l/6 

-1 

FIG. 1. The adapted mesh (xl ,..., x,) for $(x) = .x2 and the function cos(64(x)), which vanishes 
at the mesh points. 
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u = 9(x) in (7), the new kernel is simply cos vwu and hence a uniform mesh is in 
order. If one uses the midpoint rule on the new integral the result is precisely the same 
as using hj as in (10) in the discrete system (9). We leave the verification of this to the 
reader. 

Now if 4 is not available or if it vanishes sometimes, one may have to derive a 
discrete version of (10). This turns out to be less trivial than one would expect. We 
suggest a slightly different way of constructing the x-mesh which, although it sacrifices 
a bit of orthogonality, works very well in practical problems. Define [j and mesh 
points xj by 

g5n) = dn for 0 < m < II, 

(11) 

hi = & - &-, for l<j<n. 

Here we have “adapted” the endpoints 0, l/n, 2/n,..., 1 and then taken as xj the 
midpoints of the new subintervals. It is no longer true that &xj) = (j - 0.5)/n in 
general. The resulting discretization of (7) is 

2 cos(Tw~+(xi>)(hi.O = g(wk), (12) 

where wk = (k - 0.5), hj = & - i& , and xj is given by (11). The matrix in (12) is 
“close to” but not precisely orthogonal, consequently the system would have to be 
solved by, say, Gaussian elimination (as opposed to multiplication by the matrix 
transpose). However, the matrix is very well conditioned as is illustrated below. 

In summary, for the second model problem (7), if the mesh scheme (8) is used, 
orthogonality of the discrete system is achieved. In this case the hj is computed by 
hj = (n+‘(xj))-’ or some good discrete version of this. Alternatively, the mesh scheme 
(11) may be used, in which case the discrete system is no longer orthogonal, but in 
practice it is nearly so in the sense that the condition number of the matrix is close to 
one. This assumes of course that the hj are scaled out as discussed in the paragraph 
following (9). 

We conclude this section with some numerical results which illustrate the necessity 
and the effectiveness of adapting the mesh in the second model problem. First we 
attempt to solve 

s 
‘f(x) cos(m~#(x)) dx = sin 74(27~.0), (13) 

0 

where (b(x) = x2. The solution in this case isf(x) = x. In all cases we use the same 
w-mesh, wle = k - 0.5 for 1 < k < n. In Table I (left side) are shown the results 
when no adapting is done and the midpoint rule xj = (j - 0.5)/n is used. The results 
are much like those typically experienced in compact Fredholm I problems; as n 
increases the matrix becomes more ill conditioned and meaningful results are not 



WELL-CONDITIONED SYSTEMS 161 

TABLE I 

Results from Solving (13) with 4(x) = x2; Solution is f(x) = x 

Unadapted Midpoint rule 

44) E max -GLEd 
_~~._ 

3 x 103 2 x 105 65 

1 X 10" 9 x 10” 7964 
1 X 10’2 3 x 10” 460 

2 x 10’2 2 x 10’4 9999+ 

n 

10 

20 
30 

40 

Adapting using (8), (10) 

K(A) Emax EW Emed 

1 0.124 0.0218 0.00160 

1 0.126 0.0089 0.00039 
1 0.126 0.0047 0.00017 

1 0.126 0.0029 0.00009 

forthcoming. In the table E max is the maximum error in the& . Eess (the “essential” 
error) is the maximum error in the jj after excluding the n/IO largest errors (we 
consistently observed several points, about n/IO, near the endpoints at which the 
largest errors occurred). Emed is the median error. 

Also in Table I are shown the results for problem (13) when adapting is done using 
the original mesh (8) and hj = (w$‘(x~))-’ = (2n~J-~. Note that Emax does not get 
small as n increases, Eess approaches zero as l/n, and Emed approaches zero as l/n2. 
In the cases we have tried, the largest errors typically occur at one of the endpoints 
(e.g., see Fig. 2). Because of the kinship of all problems discussed herein with Fourier 
series, we speculate that the lack of convergence at the endpoints is related to the loss 
of smoothness in the function when it is extended via periodicity beyond 0 < x ,< I. 

Xt xi2 x3 X4 X5 x6 x7 x8x9x10 

FIG. 2. Graph of the exact solutionf(x) = x to (13) and the discrete solution using mesh adapting 
(8), (10) with n = 10. 
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Let us now consider a 4(x) which is related to the applications to be discussed in 
Section 3. Suppose c(x) represents a reference velocity and is assumed to be 

c(x) = 1 -+ px 

= 1 + p/2 

for 0 < x < 0.5, 

for x > 0.5, 
(14) 

where p > 0 will be set below. Now define 4(x) to be the (normalized) integral of 
l/c, i.e., 

d(x) =$joz$J = &ln(l -+/3x), x -< 0.5, 

(15) 
1 

=-[ L 141 + p/2) + ‘;v mF ;;:‘I, 
K B 

x ?, 0.5. 

where K = J’i &/c(s). Clearly 4 is of the form assumed, 4(O) = 0, $( 1) -= 1; 
moreover, 4’(x) = l/c(x) K > 0 is available if needed. Consider 

s 
‘f(x) cos(mo~(x)) dx = sin nw/aw, 

0 
(16) 

where $(x) is given in (15) with p = 1.5. The solution isf(x) = I/c(x). 
Table II (left side) shows the results when no adapting is used. Once again the 

situation is poor for small 12 and deteriorates as n becomes large. Figure 3 illustrates 
the difficulty for the case n = 10, when no adapting is done; it also illustrates the 
effectiveness of adapting. 

Table II also shows the results when the adapting scheme (8), (10) is used. Note 
again that the “essential” error approaches zero as h = l/n and the median error 
goes to zero as l/n2. 

Finally, we solve (16) using the alternative adapting scheme given by (1 I) and show 
these results in Table III. Note the similarity between the results in Tables II and I II. 
Also note that while the latter scheme does not produce a genuinely orthogonal matrix, 
the condition number is very close to one and seems to approach one as n gets large. 

TABLE II 

Results from Solving (16) with Q(x) Given by (15), p = 1.5 

Unadapted Midpoint rule Adapting using (S), (IO) 

44 E max ElMd n K(A) Em, Et% t&xi 

18 0.45 0.108 10 1 0.073 0.0135 0.00140 
1180 9 1.53 20 1 0.073 0.0054 0.00034 

1 x 105 370 18 30 1 0.073 0.0029 0.00015 
8 x 106 2 x 10’ 353 40 1 0.073 0.0018 0.00008 
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I . 

x1 x;? xj X4 X5 X6 X7 x8 xg X10 

FIG. 3. Graph of the exact solution f(x) = I/c(x) to (16) and the discrete solution (n = 10) 
with (e) adapting (S), (10) and without (+). 

TABLE III 

Results from Solving (16) Using Alternate Adapting Scheme (11) 

10 1.036 0.073 0.0174 0.00524 
20 1.019 0.073 0.0086 0.00172 
30 1.014 0.073 0.0057 0.00096 
40 1.010 0.073 0.0030 0.00046 

In conclusion, the adapted midpoint rule works quite well for the model problem, 
particularly if very high accuracy is not required. 

3. BACK TO THE INVERSE PROBLEM 

In the Introduction we discussed an inverse problem described by the boundary 
value problem (1). We indicated how a linearization of the problem leads to the 
integral equation 

I1 k(x, w) a(x) dx = j1 (")2 a(x) dx = g(w), 
0 0 c 

(17) 
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where u = u(x; w) solves the differential equation 

24” + (w”/c”) u = 0 (18) 

plus appropriate boundary conditions. In order to take advantage of the adapting 
procedure discussed in Section 2, we need to know something about the nature of the 
kernel in (17). In particular, we must find a function to play the role of C$ of the last 
section. 

When c = c(x) is variable (18) cannot generally be solved analytically. However, it 
can be analyzed rather well, particularly for large values of w. Of the several 
approaches available we believe that the so-called WKB method (e.g., see [8]) is 
probably the most fruitful for our purposes. We now give a brief description of how 
this works. 

Physical arguments, and experience, suggest that one seek solutions to (18), for 
large w, of the form 

Substituting this form into (18) and equating powers of o lead to recursive formulas 
for the &: 

$0” + l/c2 = 0, 

and so on for terms of lower order in w. Solving for I&, and & gives 

& = *i/c, ?bl = $c’lc. 

Putting these into (19) and ignoring lower-order terms, gives 

4x; w) - (W> u2 exp (iiw joz-$). W) 

That is, there are two solutions (one for each sign) with this asymptotic behavior. Let 
us now get an asymptotic expression for the real part of u2, 

u2(x;w)~c(x)exp(*i2w~oE~), 

Re[u2(x; w)] N c(x) cos (2~ JbO% g). 

More precisely, this expression is valid for one of the solutions to a” + w2u/c2 = 0. 
For simplicity let us assume the boundary conditions give this particular solution. We 



WELL-CONDITIONED SYSTEMS 165 

are now close to having our kernel in the form seen in Section 2, at least asymptotically. 
To this end define 

2w 
6=-K, where K= 

ll s 
l ds 

0 c(s) . 

(21) 

Note that B now denotes our scaled w  values; they will take on values ij, = k - 0.5 
for 1 < k < n. In this notation we have 

u2(x; w) 
Re k(x, w) = Re ___ 

c”(x) 

i.e., the Re k(x, UJ), for large w, is like the model kernel of Section 2. This suggests 
that the mesh adapting scheme of Section 2 could be useful in making the discrete 
version of (17) well conditioned. 

Suppose the adapted mesh (8), (10) is applied to (17). Assuming, for simplicity, 
that both a and g are real valued, we have 

lo1 Re k(x, w) LX(X) dx = IO1 Re ‘a~~x~)l a(x) dx = g(w). 

The usual discretization of this gives: 

h3] aj = &k), k = I,..., n. (22) 

Now a remarkable thing happens. Using (10) to define the stepsize gives 

Hence, for the matrix, call it A = (Q), in (22): 

1 
aki - - cos(~+#&)) hi = ; cos(m&$(xj)) 

4-G) 

j - 0.5 
= 3 cos (T(k - 0.5) ~ . 

n ) 

Consequently, with the h3 taken as part of the matrix, system (22) appears to be 
“nearly orthogonal.” The catch is of course that the asymptotic behavior noted is for 
“large” W. However, often this behavior is surprisingly meaningful for small and 
moderate w  as well. In our applications we have experienced this and as a result have 
found system (22) to be extremely well conditioned. (Note: we do not want to over- 
emphasize the fact that our kernel had precisely the right power of c to make the 

5SI/36/2-3 
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discrete system nearly orthogonal. Had we found an unwelcome c factor in the system, 
we would simply scale it out as we did the hj in Section 2.) 

We now study a numerical example of problem (17). Let us use the same reference 
speed as in the example of Section 2: 

c(x) = 1 + 1.5X for 0 < x < 0.5, 
= 1.75 for x > 0.5. 

The appropriate 4 is given by (15). The (x, w)-mesh is computed as usual so that 

for 1 < j, k < fz. 

In applications the g(w) in (17) is observed data. In these test problems, however, g 
must be computed for a particular a. Let us put aside until the close of this section the 
discussion on how g is computed and proceed under the assumption it is known. 

Suppose g is available at the prescribed w  values and that the exact solution to (17) 
is 

a(x) = 0.1 coG(27rx - 7T) for / x - 0.5 I < 0.25, 

0 elsewhere. (23) zzz 

A graph of c1 is shown in Fig. 4. The kernel in (17) is Re(U2)/c2, where u solves (18) with 
complex boundary conditions: 

FIG. 4. 
with n = 

U’(0; w) + iwU(0; w) = 2iw, 

u’(l;o)+i~zQ;,) =O. 
41) 

1 

Xl x2 x3 x4 x5 X6 x7 XX x9 X10 

Graph of the exact solution to (17), LX(X) as in (23), and the discrete solution 
10 adapting by (8), (10). 

(24) 

using (22) 
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(These boundary conditions are suggested by physical arguments associated with the 
wave equation; e.g., see [l].) Note that if c(x) = 1 the solution of (18) and (24) would 
be u(x; w) = eiwZ and we would have kernel k(x, o) = cos 2wx. Hence we can view 
our test problem as a (large) perturbation of this simple problem. 

To numerically solve for 01 in (17) we proceed as follows. The boundary-value 
problem (18), (24) is solved numerically for the n w-values 

CJ = & CJ = & (k - OS), 1 <k </I; 

see (21). This was done by first solving two real initial-value problems numerically, 
one with u(O) = 1, u’(0) = 0, and one with u(0) = 0, u’(0) = 1. Then superposition 
was applied to satisfy the boundary conditions. We used a Runge-Kutta-Fehlberg 
variable step-size method (see [lo]) to generate our numerical solutions to four or 
five significant figures. These values were saved for the mesh points xj , where 4(x$) = 
(j - 0.5)/n as usual. We then formed the matrix in (22) and solved for aj M a(xj) by 
a standard Gaussian elimination (with partial pivoting) routine. Of course the 
matrices will not be exactly orthogonal; however, they do turn out to be extremely 
well conditioned. The results are shown in Table IV. Note the similarity in the ac- 
curacy achieved here compared to the model problem of Section 2; see Table II. 

TABLE IV 

Results from Solving (17) via the Discrete System (22) 

n 44 10. Em,, 10 . Eess 

10 1.818 0.009 0.0051 
20 1.821 0.005 0.0034 
30 1.824 0.005 0.0022 

‘Exact solution e(x) is defined by (23). See Fig. 4. 

10 * Emed 

0.00224 

0.00036 
0.00030 

Finally, let us return to the matter of computing the “observed” data g(o). This 
discussion is not essential to the purpose of this paper, but is included for the curious 
reader. In Section 1 we sketched how the inverse problem (I) led to a nonlinear 
integral equation which in turn was linearized to give (3) or (17). In the above test 
problem we computed g(w) from (2), i.e., &g(w) = [yu’ - y’u]: , where y solves (1) 
(24). Then we solved (22) using this g to obtain, say, c@), 1 <j < n. However, this g 
is really not appropriate for the linear problem (17) since it includes the small non- 
linear term involving v = y - u in (2). Therefore, to compute a g appropriate for (17) 
and our test purposes, we iterated as follows. We put 0~~~) in (1) and resolved (1) for y, 
and then v = y - u. A new g was computed by numerically approximating 

oI(o) 

gnew = gold - uv - dx; 
2 (25) 
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see (2). Using the new g we resolved (22) for, say, a, (l). We repeated this process until 
the aj converged (this usually took three iterations). The final (Y~ are effectively what 
one would have if the g(o) appropriate for (17) were known and (22) solved once. 
These are the aj summarized in Figure 4 and Table IV. (Note: the same iteration is 
sometimes desired in real applications. For example, if g(w) were observed data for 
the original inverse problem (l), one could solve the linear system (22), modify g as 
in (25), resolve (22), and iterate to find the aj approximating the solution to (I). Tn 
this regard see [2].) 

4. SUMMARY 

For the class of applied problems discussed herein we have found this special mesh 
adapting and the mid point rule very effective. We have consistently been able to get 
very well-conditioned linear systems and the accuracy of the solutions has been 
adequate for our purposes using systems of order l&20. The well-conditioned matrices 
are particularly important to us for two reasons. The right sides g(w) represent 
observed data which in practice may have only modest accuracy; hence we cannot 
afford to lose much. Moreover, the matrices are developed by numerically solving 
numerous boundary-value problems, a relatively expensive operation. Hence it is 
important that we do not need to compute these coefficients to, say, 8 or 10 places; 
this might very well be the case if the matrices were poorly conditioned. 

A few words about the “accuracy” of our scheme is in order. All numerical evidence 
points to the fact that the resulting solutions are far more accurate than one would 
expect from an analysis of the crude (mid-point rule) quadrature scheme employed. 
The numerical results consistently look like what one would obtain from a Fourier 
series expansion of a(x) through n terms. Moreover, preliminary analysis indicates 
that this is just what is taking place. Hopefully, this analysis can be completed and 
presented in a subsequent article. This Fourier series-type convergence is probably 
the most salient feature of the procedure. We are convinced that it will ultimately 
prove extremely competive when carefully compared with alternative methods. 

Perhaps a few words about “why” our particular matrices turn out to be nearly 
orthogonal will help others find broader applications of these ideas. No doubt the 
orthogonality we have enjoyed starts with the fact that our kernel comes from the 
solution of a symmetric differential equation. Recall from classical Sturm-Liouville 
theory that if the boundary conditions were homogeneous and if we found the eigen- 
values, say oz, then the resulting solutions u(x; wz) would be orthogonal on [0, 11. In 
this case one would expect that an intelligent mesh on [0, I] would lead to an ortho- 
gonal discrete system, U(X~ , wf), 1 <j, k < n. Of course we have not suggested the 
(Very expensive) process Of finding the wk. * However, our asymptotic analysis and 
choice of wk have led to a reasonable approximation to the c&, at least in the sense of 
the proper oscillation of the functions u(x; wJ. In this regard, recall that the kth 
eigenfunction of a Sturm-Liouville problem has exactly k - 1 zeros on (0, 1). A look 
at our model kernel functions of Section 2, e.g., cos (rrw&x)), shows that they have 



WELL-CONDITIONED SYSTEMS 169 

this same property. Because of the strength of the WKB analysis in this regard, our 
kernels then also show this behavior, or nearly so. In short, the near orthogonality of 
our kernels originates with the defining boundary-value problem. 

More generally, if the kernel in question arises naturally from an orthogonal 
setting, there is probably a good chance that the approach suggested herein could 
have some value. Of course, (nearly) orthogonal matrices are not the only ones which 
are well conditioned. Suppose, for example, that a kernel is oscillatory in .Y and the 
rate of oscillations increase as the second variable (e.g., CIJ) increases. We conjecture 
that a discretization scheme analogous to that used here might be effective on such 
integral equations. Such generalizations are being investigated. We hope that the ideas 
presented here will be a modest step toward an effective method for solving a large 
class of integral equations. 
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